MULTIPLYING & DIVIDING INTEGERS

Rules for Multiplying and Dividing Integers

- 1) Determine the sign on the answer first
 - If the integers have the SAME Signs: the answer is ______ (positive)
 - If the integers have **DIFFERENT Signs**: the answer is _____ (negative)
- 2) Determine the numeric value of the operation

Examples:

 $-2 \times 7 = -14$ $-1 \times 4 = -4$ $-12 \div 6 = -2$

Examples: $3 \times 7 = -21$ $3 \times -4 = -12$ $40 \div -5 = -8$

Examples: $6 \times 3 = \sqrt{8}$

 $28 \div 7 = 4$

Examples: $-8 \times -3 = 24$ $-24 \div -6 = 4$ $-9 \div -1 = 9$

WHAT WILL IT LOOK LIKE? Other Ways To Write $\mathbf x$ and \div

Another way to indicate multiplication of numbers in math is to use brackets () around one or more numbers.

Examples:

 $3(4) = 3 \times 4$ $(8)(-2) = 8 \times (-2)$ $-6(-7) = -6 \times (-7)$ = -16 = -16

Another way to show division of numbers in math is to write them as a fraction

Examples:

 $\frac{12}{2} = 12 \div 2 \qquad \frac{-6}{-3} = -6 \div (-3) \qquad \frac{8}{-2} = \% \div (-2)$

We can also put multiplication and division together this way

Examples:

 $6\left(\frac{9}{3}\right) = 6 \times (9 \div 3) \quad \frac{-16}{-4}(2) = -16 \div (-4) \times 2$ = 4 x2

Remember to do brackets first (orde of operations)

THE INVISIBLE ONE (1)

When there is a negative sign IN FRONT of a bracket, there is an invisible "1" between the negative sign and the bracket

Examples:

- (3) means
$$-1 \times 3$$
 - (-6) means $(-1) \times (-6)$ = -3

This explains the rule for subtracting negatives (see yesterday's lesson)
SUBTRACTING A NEGATIVE IS LIKE ADDING A POSITIVE

Yesterday we saw that
$$3 - (-5) = 3 \div 5$$
 this is because $3 - (-5) = 3 - 1(-5)$ Since $-1(-5) = 5$ = 8

CALCULATE

(a)
$$(-2) \times (+5) \times (-7)$$

= $(-10) \times (-7)$
= 70

(c)
$$(+6) \times (-5) \times (+4)$$

= $(-30) \times (+4)$
= (-12.0)

(e)
$$(-12)(+15)(-6)$$

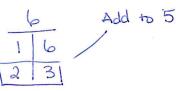
= $(-180)(-6)$
= $(-180)(-6)$

(g)
$$(2)(-7)(-5)$$

= $(-1+)(-5)$
= 70

(b)
$$(-2) \times (-3) \times (-4)$$

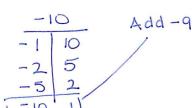
= (-4)
= $-2+$


(d)
$$(+8) \times (-2) \times (-5)$$

= $(-16)(-5)$
= 80

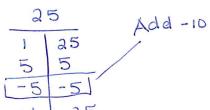
(f)
$$(-10)(4)(6)$$

= $(-40)(6)$
= -2.40


(h)
$$(-1)(-2)(-3)(-4)$$

= $(2)(-3)(-4)$
= $(-6)(-4)$
= 24

Find a pair of integers that meet the following requirements


a) Multiply to 6 Add to 5

b) Multiply to -10 Add to -9

c) Multiply to 25 Add to -10

